Package index
-
blq_trans()blq_log_trans() - A transform for ggplot2 with data that may be below the lower limit of quantification
-
breaks_blq_general() - Generate breaks for measurements below the limit of quantification
-
calc_derived()calc_derived_1cpt()calc_derived_2cpt()calc_derived_3cpt() - Calculate derived pharmacokinetic parameters for a 1-, 2-, or 3-compartment linear model.
-
calc_sd_1cmt()calc_sd_1cmt_linear_bolus()calc_sd_1cmt_linear_oral_1_lag()calc_sd_1cmt_linear_infusion()calc_sd_1cmt_linear_oral_0()calc_sd_1cmt_linear_oral_1()calc_sd_1cmt_linear_oral_0_lag() - Calculate C(t) for a 1-compartment linear model
-
calc_sd_2cmt()calc_sd_2cmt_linear_bolus()calc_sd_2cmt_linear_oral_1_lag()calc_sd_2cmt_linear_infusion()calc_sd_2cmt_linear_oral_0_lag()calc_sd_2cmt_linear_oral_1()calc_sd_2cmt_linear_oral_0() - Calculate C(t) for a 2-compartment linear model
-
calc_sd_3cmt()calc_sd_3cmt_linear_bolus()calc_sd_3cmt_linear_oral_1_lag()calc_sd_3cmt_linear_infusion()calc_sd_3cmt_linear_oral_0()calc_sd_3cmt_linear_oral_0_lag()calc_sd_3cmt_linear_oral_1() - Calculate C(t) for a 3-compartment linear model
-
calc_ss_1cmt()calc_ss_1cmt_linear_bolus()calc_ss_1cmt_linear_infusion()calc_ss_1cmt_linear_oral_0()calc_ss_1cmt_linear_oral_0_lag()calc_ss_1cmt_linear_oral_1_lag()calc_ss_1cmt_linear_oral_1() - Calculate C(t) for a 1-compartment linear model at steady-state
-
calc_ss_2cmt()calc_ss_2cmt_linear_bolus()calc_ss_2cmt_linear_infusion()calc_ss_2cmt_linear_oral_0()calc_ss_2cmt_linear_oral_1_lag()calc_ss_2cmt_linear_oral_0_lag()calc_ss_2cmt_linear_oral_1() - Calculate C(t) for a 2-compartment linear model at steady-state
-
calc_ss_3cmt()calc_ss_3cmt_linear_bolus()calc_ss_3cmt_linear_oral_1_lag()calc_ss_3cmt_linear_infusion()calc_ss_3cmt_linear_oral_0()calc_ss_3cmt_linear_oral_0_lag()calc_ss_3cmt_linear_oral_1() - Calculate C(t) for a 3-compartment linear model at steady-state
-
count_na() - Count the number of NA values in a vector.
-
dgr_table() - Generate a summary table of descriptive data for every individual in a dataset suitable for tabulation in a report.
-
estimate_lloq() - Estimate the lower limit of quantification (LLOQ) from a vector
-
fmt_signif() - Format a number with the correct number of significant digits and trailing zeroes.
-
ftrans_blq_linear()ftrans_blq_log() - Forward transformation for linear BLQ data
-
gcv() - Calculate a geometric coefficient of variation.
-
gcv_convert() - Convert geometric variance or standard deviation to a geometric coefficient of variation
-
get_auc() - Calculate the area under the curve (AUC) for each subject over the time interval for dependent variables (
dv) using the trapezoidal rule.
-
get_est_table() - Create a table of model parameter estimates from a NONMEM output object.
-
get_omega() - Extract variability parameter estimates from a NONMEM output object.
-
get_probinfo() - Extract problem and estimation information from a NONMEM output object.
-
get_shrinkage() - Extract shrinkage estimates from a NONMEM output object.
-
get_sigma() - Extract residual variability parameter estimates from a NONMEM output object.
-
get_theta() - Extract structural model parameter estimates and associated information from a NONMEM output object.
-
gm() - Calculate geometric mean
-
itrans_blq_linear()itrans_blq_log() - Inverse transformation for linear BLQ data
-
label_blq() - Label axes with censoring labels for BLQ
-
pcv() - Calculate percentage coefficient of variation
-
pk_curve() - Provide concentration-time curves.
-
plot_dist() - Plot a distribution as a hybrid containing a halfeye, a boxplot and jittered points.
-
plot_nmprogress() - Plot NONMEM parameter estimation by iteration.
-
plot_scm() - Visualize PsN SCM output.
-
read_nm() - Read NONMEM 7.2+ output into a list of lists.
-
read_nm_all() - Read all NONMEM files for a single NONMEM run.
-
read_nm_multi_table() - Read (single or) multiple NONMEM tables from a single file
-
read_nm_std_ext() - Read a standard NONMEM extension file
-
read_nmcov() - Read in the NONMEM variance-covariance matrix.
-
read_nmext() - Read NONMEM output into a list.
-
read_nmtables() - Reads NONMEM output tables.
-
read_scm() - Read PsN SCM output into a format suitable for further use.
-
rnm() - Read NONMEM 7.2+ output into an R object.
-
sample_omega() - Sample from the multivariate normal distribution using the OMEGA variance-covariance matrix to generate new sets of simulated ETAs from NONMEM output.
-
sample_sigma() - Sample from the multivariate normal distribution using the SIGMA variance-covariance matrix to generate new sets of simulated EPSILONs from NONMEM output.
-
sample_uncert() - Sample from the multivariate normal distribution to generate new sets of parameters from NONMEM output.
-
table_rtf() - Read NONMEM output into a list.