Skip to contents

All functions

blq_trans() blq_log_trans()
A transform for ggplot2 with data that may be below the lower limit of quantification
breaks_blq_general()
Generate breaks for measurements below the limit of quantification
calc_derived() calc_derived_1cpt() calc_derived_2cpt() calc_derived_3cpt()
Calculate derived pharmacokinetic parameters for a 1-, 2-, or 3-compartment linear model.
calc_sd_1cmt() calc_sd_1cmt_linear_bolus() calc_sd_1cmt_linear_oral_1_lag() calc_sd_1cmt_linear_infusion() calc_sd_1cmt_linear_oral_0() calc_sd_1cmt_linear_oral_1() calc_sd_1cmt_linear_oral_0_lag()
Calculate C(t) for a 1-compartment linear model
calc_sd_2cmt() calc_sd_2cmt_linear_bolus() calc_sd_2cmt_linear_oral_1_lag() calc_sd_2cmt_linear_infusion() calc_sd_2cmt_linear_oral_0_lag() calc_sd_2cmt_linear_oral_1() calc_sd_2cmt_linear_oral_0()
Calculate C(t) for a 2-compartment linear model
calc_sd_3cmt() calc_sd_3cmt_linear_bolus() calc_sd_3cmt_linear_oral_1_lag() calc_sd_3cmt_linear_infusion() calc_sd_3cmt_linear_oral_0() calc_sd_3cmt_linear_oral_0_lag() calc_sd_3cmt_linear_oral_1()
Calculate C(t) for a 3-compartment linear model
calc_ss_1cmt() calc_ss_1cmt_linear_bolus() calc_ss_1cmt_linear_infusion() calc_ss_1cmt_linear_oral_0() calc_ss_1cmt_linear_oral_0_lag() calc_ss_1cmt_linear_oral_1_lag() calc_ss_1cmt_linear_oral_1()
Calculate C(t) for a 1-compartment linear model at steady-state
calc_ss_2cmt() calc_ss_2cmt_linear_bolus() calc_ss_2cmt_linear_infusion() calc_ss_2cmt_linear_oral_0() calc_ss_2cmt_linear_oral_1_lag() calc_ss_2cmt_linear_oral_0_lag() calc_ss_2cmt_linear_oral_1()
Calculate C(t) for a 2-compartment linear model at steady-state
calc_ss_3cmt() calc_ss_3cmt_linear_bolus() calc_ss_3cmt_linear_oral_1_lag() calc_ss_3cmt_linear_infusion() calc_ss_3cmt_linear_oral_0() calc_ss_3cmt_linear_oral_0_lag() calc_ss_3cmt_linear_oral_1()
Calculate C(t) for a 3-compartment linear model at steady-state
count_na()
Count the number of NA values in a vector.
dgr_table()
Generate a summary table of descriptive data for every individual in a dataset suitable for tabulation in a report.
estimate_lloq()
Estimate the lower limit of quantification (LLOQ) from a vector
fmt_signif()
Format a number with the correct number of significant digits and trailing zeroes.
ftrans_blq_linear() ftrans_blq_log()
Forward transformation for linear BLQ data
gcv()
Calculate a geometric coefficient of variation.
gcv_convert()
Convert geometric variance or standard deviation to a geometric coefficient of variation
get_auc()
Calculate the area under the curve (AUC) for each subject over the time interval for dependent variables (dv) using the trapezoidal rule.
get_est_table()
Create a table of model parameter estimates from a NONMEM output object.
get_omega()
Extract variability parameter estimates from a NONMEM output object.
get_probinfo()
Extract problem and estimation information from a NONMEM output object.
get_shrinkage()
Extract shrinkage estimates from a NONMEM output object.
get_sigma()
Extract residual variability parameter estimates from a NONMEM output object.
get_theta()
Extract structural model parameter estimates and associated information from a NONMEM output object.
gm()
Calculate geometric mean
itrans_blq_linear() itrans_blq_log()
Inverse transformation for linear BLQ data
label_blq()
Label axes with censoring labels for BLQ
pcv()
Calculate percentage coefficient of variation
pk_curve()
Provide concentration-time curves.
plot_dist()
Plot a distribution as a hybrid containing a halfeye, a boxplot and jittered points.
plot_nmprogress()
Plot NONMEM parameter estimation by iteration.
plot_scm()
Visualize PsN SCM output.
read_nm()
Read NONMEM 7.2+ output into a list of lists.
read_nm_all()
Read all NONMEM files for a single NONMEM run.
read_nm_multi_table()
Read (single or) multiple NONMEM tables from a single file
read_nm_std_ext()
Read a standard NONMEM extension file
read_nmcov()
Read in the NONMEM variance-covariance matrix.
read_nmext()
Read NONMEM output into a list.
read_nmtables()
Reads NONMEM output tables.
read_scm()
Read PsN SCM output into a format suitable for further use.
rnm()
Read NONMEM 7.2+ output into an R object.
sample_omega()
Sample from the multivariate normal distribution using the OMEGA variance-covariance matrix to generate new sets of simulated ETAs from NONMEM output.
sample_sigma()
Sample from the multivariate normal distribution using the SIGMA variance-covariance matrix to generate new sets of simulated EPSILONs from NONMEM output.
sample_uncert()
Sample from the multivariate normal distribution to generate new sets of parameters from NONMEM output.
table_rtf()
Read NONMEM output into a list.